Los teoremas de incompletitud de Gödel son dos célebres teoremas de lógica matemática demostrados por Kurt Gödel en 1931. Ambos están relacionados con la existencia de proposiciones indecidibles en ciertas teorías aritméticas.
-El primer teorema de incompletitud:
afirma que, bajo ciertas condiciones, ninguna teoría matemática formal capaz de describir los números naturales y la aritmética con suficiente expresividad, es a la vez consistente y completa. Es decir, si los axiomas de dicha teoría no se contradicen entre sí, entonces existen enunciados que no se pueden probar ni refutar a partir de ellos. En particular, la conclusión del teorema se aplica siempre que la teoría aritmética en cuestión sea recursiva, esto es, una teoría en la que el proceso de deducción se pueda llevar a cabo mediante un algoritmo.
La prueba del teorema es totalmente explícita y en ella se construye una fórmula, denotada habitualmente G en honor a Gödel, para la que dada una demostración de la misma, se puede construir una refutación, y viceversa. Sin embargo, la interpretación natural de dicha sentencia en términos de números naturales es verdadera.1
Demostración Primer teorema de incompletitud de Gödel
Cualquier teoría aritmética recursiva que sea consistente es incompleta.
La demostración de este teorema pasa por construir una cierta fórmula, la «sentencia de Gödel» G, que no puede ser probada ni refutada en la teoría aritmética recursiva T: ni G ni ¬G (la negación de G) son teoremas de T. Se dice entonces que G y ¬G son indecidibles o independientes en T.
-Segundo teorema de incompletitud de Gödel
-El segundo teorema de incompletitud es un caso particular del primero: afirma que una de las sentencias indecidibles de dicha teoría es aquella que «afirma» la consistencia de la misma. Es decir, que si el sistema de axiomas en cuestión es consistente, no es posible demostrarlo mediante dichos axiomas.
Los teoremas de incompletitud de Gödel son uno de los grandes avances de la lógica matemática, y supusieron —según la mayoría de la comunidad matemática— una respuesta negativa al segundo problema de Hilbert.1 Los teoremas implican que los sistemas axiomáticos de primer orden tienen severas limitaciones para fundamentar las matemáticas, y supusieron un duro golpe para el llamado programa de Hilbert para la fundamentación de las matemáticas. Por otra parte, durante algún tiempo ni Hilbert ni otros de sus colaboradores fueron conscientes de la importancia del trabajo de Gödel para su programa.
El segundo teorema de incompletitud muestra otro ejemplo explícito de una fórmula que ninguna teoría aritmética puede demostrar, además de G. De nuevo, usando la numeración de Gödel, puede encontrarse una fórmula, denotada Consis T, cuyo significado es «no puede encontrarse una contradicción en T», o en otras palabras, «T es consistente».
Demostración Segundo teorema de incompletitud de Gödel
En toda teoría aritmética recursiva consistente T, la fórmula Consistente T no es un teorema.
La demostración del segundo teorema requiere traducir el primero a una fórmula. El primer teorema afirma, entre otras cosas, que si T es consistente, entonces G no es demostrable. La fórmula que afirma la consistencia de T es Consis T, mientras que la fórmula que afirma la indemostrabilidad de G es la propia G. La fórmula que traduce el primer teorema (una parte de él) es Consis T ⇒ G, donde «⇒» significa implicación. Gödel demostró que esta fórmula es un teorema,6 y que por lo tanto Consis T no es un teorema: si lo fuera, de las reglas básicas de T como teoría formal se deduciría que G es demostrable, en contradicción con el enunciado del primer teorema de incompletitud.
No hay comentarios.:
Publicar un comentario